Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system
نویسنده
چکیده
Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a basic leucine zipper (bZIP) domain. These membrane-bound bZIP transcription factors include OASIS, BBF2H7 CREBH, CREB4 and Luman, and are collectively referred to as OASIS family members. Despite their structural similarities with ATF6, differences in activating stimuli and tissue distribution indicate specialized functions of each member on regulating UPR signaling in specific organs and tissues. One of them, OASIS, is expressed preferentially in astrocytes in the central nervous system (CNS). OASIS temporally regulates the differentiation from neural precursor cells into astrocytes to promote the expression of Glial Cell Missing 1 through dynamic interactions among OASIS family members followed by accelerating demethylation of the Gfap promoter. This review is a summary of our current understanding of the physiological functions of OASIS in the CNS.
منابع مشابه
The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine.
OASIS is a basic leucine zipper transmembrane transcription factor localized in the endoplasmic reticulum (ER) that is cleaved in its transmembrane region in response to ER stress. This novel ER stress transducer has been demonstrated to express in osteoblasts and astrocytes and promote terminal maturation of these cells. Additionally, OASIS is highly expressed in goblet cells of the large inte...
متن کاملTranscriptional Regulation of VEGFA by the Endoplasmic Reticulum Stress Transducer OASIS in ARPE-19 Cells
BACKGROUND Vascular endothelial growth factor-A (VEGFA) is the main mediator of angiogenesis. Angiogenesis plays important roles not only in many physiological processes, but also in the pathophysiology of many diseases. VEGFA is one of the therapeutic targets of treatment for ocular diseases with neovascularization. Therefore, elucidation of the regulatory mechanisms for VEGFA expression is im...
متن کاملIncreased Susceptibility to Dextran Sulfate Sodium-Induced Colitis in the Endoplasmic Reticulum Stress Transducer OASIS Deficient Mice
OASIS is a basic leucine zipper (bZIP) transmembrane transcription factor that is activated in response to endoplasmic reticulum (ER) stress. Previously, we showed that OASIS regulates final maturation of goblet cells in the large intestine. In the present study, to elucidate the roles of OASIS under pathophysiological conditions, we examined the stress response and inflammatory responses in Oa...
متن کاملEndoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملOASIS/CREB3L1 Is Induced by Endoplasmic Reticulum Stress in Human Glioma Cell Lines and Contributes to the Unfolded Protein Response, Extracellular Matrix Production and Cell Migration
OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87) and expression levels were increased upon treatment wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 89 شماره
صفحات -
تاریخ انتشار 2014